skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A key challenge in conducting comparative analyses across social units, such as religions, ethnicities, or cultures, is that data on these units is often encoded in distinct and incompatible formats across diverse datasets. This can involve simple differences in the variables and values used to encode these units (e.g., Roman Catholic is V130 = 1 vs. Q98A = 2 in two different datasets) or differences in the resolutions at which units are encoded (Maya vs. Kaqchikel Maya). These disparate encodings can create substantial challenges for the efficiency and transparency of data syntheses across diverse datasets. We introduce a user‐friendly set of tools to help users translate four kinds of categories (religion, ethnicity, language, and subdistrict) across multiple, external datasets. We outline the platform's key functions and current progress, as well as long‐range goals for the platform. 
    more » « less
  2. This work advances the understanding of oscillator Ising machines (OIMs) as a nonlinear dynamic system for solving computationally hard problems. Specifically, we classify the infinite number of all possible equilibrium points of an OIM, including non-0/π ones, into three types based on their structural stability properties. We then employ the stability analysis techniques from control theory to analyze the stability property of all possible equilibrium points and obtain the necessary and sufficient condition for their stability. As a result of these analytical results, we establish, for the first time, the threshold of the binarization in terms of the coupling strength and strength of the second harmonic signal. Furthermore, we provide an estimate of the domain of attraction of each asymptotically stable equilibrium point by employing the Lyapunov stability theory. Finally, we illustrate our theoretical conclusions by numerical simulation. 
    more » « less
  3. Given the fundamental tradeoff between run-time and recovery performance, current distributed systems often build application-specific recovery strategies to minimize overheads. However, it is increasingly common for different applications to be composed into heterogeneous pipelines. Implementing multiple interoperable recovery techniques in the same system is rare and difficult. Thus, today's users must choose between: (1) building on a single system, and face a fixed choice of performance vs. recovery overheads, or (2) the challenging task of stitching together multiple systems that can offer application-specific tradeoffs. We present ExoFlow, a universal workflow system that enables a flexible choice of recovery vs. performance tradeoffs, even within the same application. The key insight behind our solution is to decouple execution from recovery and provide exactly-once semantics as a separate layer from execution. For generality, workflow tasks can return references that capture arbitrary inter-task communication. To enable the workflow system and therefore the end user to take control of recovery, we design task annotations that specify execution semantics such as nondeterminism. ExoFlow generalizes recovery for existing workflow applications ranging from ETL pipelines to stateful serverless workflows, while enabling further optimizations in task communication and recovery. 
    more » « less
  4. Abstract Proposed mechanisms for large intrinsic anomalous Hall effect (AHE) in magnetic topological semimetals include diverging Berry curvatures of Weyl nodes, anticrossing nodal rings or points of non-trivial bands. Here we demonstrate that a half-topological semimetal (HTS) state near a topological critical point can provide an alternative mechanism for a large AHE via systematic studies on an antiferromagnetic (AFM) half-Heusler compound TbPdBi. We not only observe a large AHE with tanΘH≈ 2 in its field-driven ferromagnetic (FM) phase, but also find a distinct Hall resistivity peak in its canted AFM phase. Moreover, we observe a large negative magnetoresistance with a value of ~98%. Our in-depth theoretical modelling indicates that these exotic transport properties originate from the HTS state which exhibits Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands. Our study offers alternative strategies for improved materials design for spintronics and other applications. 
    more » « less
  5. Abstract The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently, T a A s 2 , a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the ( 2 01 ) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface of T a A s 2 are trivial bulk bands. The absence of symmetry-protected surface state on the ( 2 01 ) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR of T a A s 2
    more » « less